

SNAP-TECH-07-003: Cassegrain Shutters

0.61m ϕ Ribbed Aluminum Cassegrain Mask

- ➤ "Postcard Size" ~ 20 gram Aluminum Sandwich Shutters
- ➤ Redundant 60° LAT Motor Drives with Resolvers for Feedback
- > FPGA based control for Repeatable Exposures & Smooth Motion
- > ACS Guider Ports are **NOT** Shuttered

Mask and Shutter Assembly Detail

Individual Shutter Sub-Assemblies

Composite of Shutter Assemblies

Shutter Blade & Counterweight Assembly

Limited Angle Torque (LAT) Motor (2)

Shutter Blade Assembly Details

Bonded Al Honeycomb Blade

- ➤ 4 mil Al skins, 1/8" cell 3.1 pcf Al Core
 - \gt 1/8 5056 0007 seems the 'good choice'
- ➤ Honeycomb Core Fill near End Brackets

Machined Al Blade End Brackets

Modest Bonding / Alignment Fixtures needed

Al Shaft and Counterbalance

- ➤ Roll Pins in End Brackets after Balancing
- Braycote 602 Lubricated M6 Ball Bearings

Bumper Stops are needed for FPGA Malfunctions Only (28V $\rightarrow \omega_f \rightarrow$ 32 rad/s)

- ➤ Polyurethane Bumper Strips in the Mask for Closing
 - > ~ 3 mm Over Travel Allowed (First Shutter Light at ~7½ mm)
 - ➤ Shutter Closed Position is ~3½ mm above the Mask
 - ➤ Impact Forces are near the Blade's **Center of Percussion**
- ➤ Leaf Spring Bumpers for the Opening Direction
 - ➤ Longer ≈ 10 mm Over Travel Assumed

Shutter Installation – location is somewhat awkward, but Workable

➤ Shutter Interface Ring on Bipods (or flexures) Installed in OTA Early

Telescope ICD

Shutter Smooth Motion Profile – FPGA control planned

- ➤ Max tangential Blade Acceleration is 5+ G's at its Radius of Gyration
- > Repeatable Motion Required for Science, Smooth Motion Desired for Jitter
 - > ON / OFF Drive Profile Illustrated for Comparisons Only

Observatory Disturbances in Pair Operation

- > Transmitted Forces are Ideally Zero, with Small Balance Residuals in Practice
- > Transmitted Moments cannot be Zero, but are mostly Reacted in the Stiff Mask
- > **Single** Shutter Operation Disturbances
 - > Forces remain as Ideally Zero, Small in Practice
 - ➤ Moment of Momentum changes Pointing by ≈ 14 MAS (20 MAS is our ACS goal)
- ➤ The Shock Response Spectra (SRS) is the "pre FEM time step approach" to transients
 - ➤ Predicts any 2 DOF system response at Fn Hz
 - Usual format is acceleration, from test data
 - ➤ Math is a Rigorous Convolution Integral
 - ➤ SQ Torque (ON/OFF) for comparisons only
 - > **NO** ¹/_R² Transmission Losses are Included!

Note that Torques are large compared to Forces

Preliminary Electrical / Functional Block Diagram

